An Introduction to Nonstandard Analysis

Jeffrey Zhang

Directed Reading Program Fall 2018 December 5, 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Developing/Understanding Differential and Integral Calculus using infinitely large and small numbers
- Provide easier and more intuitive proofs of results in analysis

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

Let I be a nonempty set. A filter on I is a nonempty collection $F \subseteq P(I)$ of subsets of I such that:

- If $A, B \in F$, then $A \cap B \in F$.
- If $A \in F$ and $A \subseteq B \subseteq I$, then $B \in F$.

F is proper if $\emptyset \notin F$.

Definition

An ultrafilter is a proper filter such that for any $A \subseteq I$, either $A \in F$ or $A^c \in F$. $F^i = \{A \subseteq I : i \in A\}$ is called the principal ultrafilter generated by *i*.

Theorem

Any infinite set has a nonprincipal ultrafilter on it.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Pf: Zorn's Lemma/Axiom of Choice.

Let $\mathbb{R}^{\mathbb{N}}$ be the set of all real sequences on \mathbb{N} , and let F be a fixed nonprincipal ultrafilter on \mathbb{N} . Define an (equivalence) relation on $\mathbb{R}^{\mathbb{N}}$ as follows:

$$\langle r_n \rangle \equiv \langle s_n \rangle$$
 iff $\{n \in \mathbb{N} : r_n = s_n\} \in F$.

One can check that this is indeed an equivalence relation. We denote the equivalence class of a sequence $r \in \mathbb{R}^{\mathbb{N}}$ under \equiv by [r]. Then

$$\mathbb{T}\mathbb{R} = \{[r] : r \in \mathbb{R}^{\mathbb{N}}\}.$$

Also, we define

$$[r] + [s] = [\langle r_n + s_n \rangle]$$
$$[r] * [s] = [\langle r_n * s_n \rangle]$$

We say [r] = [s] iff $\{n \in \mathbb{N} : r_n = s_n\} \in F$. < is defined similarly. A subset A of \mathbb{R} can be enlarged to a subset *A of * \mathbb{R} , where

$$[r] \in {}^*A \iff \{n \in \mathbb{N} : r_n \in A\} \in F.$$

Likewise, a function $f : \mathbb{R} \to \mathbb{R}$ can be extended to $*f : *\mathbb{R} \to *\mathbb{R}$, where

$$f([r]) := [\langle f(r_1), f(r_2), ... \rangle]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A hyperreal b is called:

- limited iff |b| < n for some $n \in \mathbb{N}$.
- unlimited iff |b| > n for all $n \in \mathbb{N}$.
- infinitesimal iff $|b| < \frac{1}{n}$ for all $n \in \mathbb{N}$.
- appreciable iff $\frac{1}{n} < |b| < n$ for some $n \in \mathbb{N}$.

Statement: A defined $\mathcal{L}_{\mathcal{R}}$ sentence ϕ is true iff $*\phi$ is true. Examples:

$$\forall x, y \in \mathbb{R}, x < y \Rightarrow \exists q \in \mathbb{Q}(x < q < y).$$

gets transferred to

$$\forall x, y \in {}^*\mathbb{R}, x < y \Rightarrow \exists q \in {}^*\mathbb{Q}(x < q < y).$$

 $\forall x, y \in \mathbb{R}, \sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$

gets transferred to

 $\forall x, y \in {}^*\mathbb{R}, {}^*\sin(x+y) = {}^*\sin(x){}^*\cos(y) + {}^*\cos(x){}^*\sin(y)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We say a hyperreal b is infinitely close to hyperreal c if b - c is infinitesimal and denote this by $b \simeq c$. One can show that \simeq is an equivalence relation. We define

$$hal(b) = \{c \in {}^*\mathbb{R} : b \simeq c\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへ⊙

Theorem

Every limited hyperreal b is infinitely close to exactly one real number, called the shadow of b, denoted by sh(b).

Note that a real-valued sequence is a function from $\mathbb{N} \to \mathbb{R}$, so it extends to a hypersequence mapping $*\mathbb{N} \to *\mathbb{R}$.

Theorem

A real valued sequence $\langle s_n \rangle$ converges to $L \in \mathbb{R}$ iff $s_n \simeq L$ for all unlimited n.

Theorem

A real valued sequence $\langle s_n \rangle$ is Cauchy in \mathbb{R} iff for all m,n unlimited hypernaturals, $s_m \simeq s_n$.

Using these concepts, we can prove that a real-valued sequence s convergent in $\mathbb{R} \Rightarrow s$ is Cauchy.

Pf: Suppose $\langle s_n \rangle$ converges in \mathbb{R} . Then by the first theorem, $s_n \simeq L$ for all unlimited *n*. So for all *l*, *m* unlimited hypernaturals, $s_l \simeq L \simeq s_m \Rightarrow s_l \simeq s_m$ because \simeq an equivalence relation. Then by the second theorem, $\langle s_n \rangle$ is Cauchy.

Theorem

f is continuous at $c \in \mathbb{R}$ iff $*f(x) \simeq *f(c)$ for all $x \in *\mathbb{R}$ such that $x \simeq c$.

Example: $f(c) = c^2$. Let c be real and $x \simeq c$. Then $x = c + \epsilon$ for some infinitesimal ϵ , and

$$f(x) - f(c) = x^2 - c^2$$
$$= (c + \epsilon)^2 - c^2$$
$$= c^2 + 2\epsilon c + \epsilon^2 - c^2$$
$$= 2\epsilon c + \epsilon^2$$

which is infinitesimal because c is a real number and so it is limited. Thus, c^2 is continuous.

Another Application:

Theore<u>m</u>

Let f be a real function defined on some open neighborhood of $c \in \mathbb{R}$, and let *f be constant on hal(c). Then f is constant on some open interval $(c - \epsilon, c + \epsilon) \subseteq \mathbb{R}$.

Pf: Note that for some positive infinitesimal *d*, we have the statement $\forall x \in *\mathbb{R}$ such that (|x - c|) < d, *f(x) = *f(c) = L for some *L*. This implies that $\exists y \in *\mathbb{R}^+$, $\forall x \in *\mathbb{R}$ such that (|x - c|) < y, $*f(x) = *f(c) = L \in *\mathbb{R}$. By transfer, we have the sentence $\exists y \in \mathbb{R}^+$, $\forall x \in \mathbb{R}$ such that (|x - c|) < y, $f(x) = f(c) = L \in \mathbb{R}$. Thus, *f* is constant on the interval $(c - y, c + y) \subseteq \mathbb{R}$.

Theorem

If f is defined at $x \in \mathbb{R}$, then $L \in \mathbb{R}$ is the derivative of f at x iff for every nonzero infinitesimal ϵ , *f(x + ϵ) is defined and $\frac{*f(x + \epsilon) - *f(x)}{\epsilon} \simeq L.$

Example: Consider the real-valued function sin(x), where $x \in \mathbb{R}$. Now consider $\frac{sin(x + \epsilon) - sin(x)}{\epsilon}$ for some ϵ an infinitesimal. Then by sum of sines, we get

$$\frac{\sin(x+\epsilon) - \sin(x)}{\epsilon} = \frac{\sin(x)\cos(\epsilon) + \cos(x)\sin(\epsilon) - \sin(x)}{\epsilon}$$

$$cos(x) \text{ is continuous, so } cos(\epsilon) \simeq cos(0) = 1 \text{ and so}$$
 $sin(x) cos(\epsilon) \simeq sin(x). \text{ Thus,}$

$$\frac{sin(x) cos(\epsilon) + cos(x) sin(\epsilon) - sin(x)}{\epsilon} \simeq \frac{cos(x) sin(\epsilon)}{\epsilon}$$

Also, sin(x) is continuous, so $sin(\epsilon) \simeq sin(0) = 0$, so $sin(\epsilon) \simeq \epsilon$ and

$$\frac{\cos(x)\sin(\epsilon)}{\epsilon}\simeq\cos(x).$$

By the theorem, this implies that the derivative of sin(x) at $x \in \mathbb{R}$ is cos(x).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The Transfer Principle is key.
- Nonstandard Analysis makes analysis easier!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ