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Motivation

• Developing/Understanding Differential and Integral Calculus
using infinitely large and small numbers

• Provide easier and more intuitive proofs of results in analysis



Filters

Definition

Let I be a nonempty set. A filter on I is a nonempty collection
F ⊆ P(I ) of subsets of I such that:

• If A,B ∈ F , then A ∩ B ∈ F .

• If A ∈ F and A ⊆ B ⊆ I , then B ∈ F .

F is proper if ∅ /∈ F .

Definition

An ultrafilter is a proper filter such that for any A ⊆ I , either
A ∈ F or Ac ∈ F . F i = {A ⊆ I : i ∈ A} is called the principal
ultrafilter generated by i .



Filters

Theorem

Any infinite set has a nonprincipal ultrafilter on it.

Pf: Zorn’s Lemma/Axiom of Choice.



The Hyperreals

Let RN be the set of all real sequences on N, and let F be a fixed
nonprincipal ultrafilter on N. Define an (equivalence) relation on
RN as follows:

〈rn〉 ≡ 〈sn〉 iff {n ∈ N : rn = sn} ∈ F .

One can check that this is indeed an equivalence relation. We
denote the equivalence class of a sequence r ∈ RN under ≡ by [r ].
Then

∗R = {[r ] : r ∈ RN}.

Also, we define

[r ] + [s] = [〈rn + sn〉]
[r ] ∗ [s] = [〈rn ∗ sn〉]



The Hyperreals

We say [r ] = [s] iff {n ∈ N : rn = sn} ∈ F . < is defined similarly.
A subset A of R can be enlarged to a subset ∗A of ∗R, where

[r ] ∈ ∗A ⇐⇒ {n ∈ N : rn ∈ A} ∈ F .

Likewise, a function f : R→ R can be extended to ∗f : ∗R→ ∗R,
where

∗f ([r ]) := [〈f (r1), f (r2), ...〉]



The Hyperreals

A hyperreal b is called:

• limited iff |b| < n for some n ∈ N.

• unlimited iff |b| > n for all n ∈ N.

• infinitesimal iff |b| < 1
n for all n ∈ N.

• appreciable iff 1
n < |b| < n for some n ∈ N.



Transfer Principle

Statement: A defined LR sentence φ is true iff ∗φ is true.

Examples:

∀x , y ∈ R, x < y ⇒ ∃q ∈ Q(x < q < y).

gets transferred to

∀x , y ∈ ∗R, x < y ⇒ ∃q ∈ ∗Q(x < q < y).

∀x , y ∈ R, sin(x + y) = sin(x) cos(y) + cos(x) sin(y)

gets transferred to

∀x , y ∈ ∗R, ∗ sin(x + y) = ∗ sin(x)∗ cos(y) + ∗ cos(x)∗ sin(y)



Shadows and Halos

We say a hyperreal b is infinitely close to hyperreal c if b − c is
infinitesimal and denote this by b ' c . One can show that ' is an
equivalence relation. We define

hal(b) = {c ∈ ∗R : b ' c}.

Theorem

Every limited hyperreal b is infinitely close to exactly one real
number, called the shadow of b, denoted by sh(b).



Convergence

Note that a real-valued sequence is a function from N→ R, so it
extends to a hypersequence mapping ∗N→ ∗R.

Theorem

A real valued sequence 〈sn〉 converges to L ∈ R iff sn ' L for all
unlimited n.

Theorem

A real valued sequence 〈sn〉 is Cauchy in R iff for all m,n unlimited
hypernaturals, sm ' sn.

Using these concepts, we can prove that a real-valued sequence s
convergent in R⇒ s is Cauchy.



Convergence

Pf: Suppose 〈sn〉 converges in R. Then by the first theorem,
sn ' L for all unlimited n. So for all l ,m unlimited hypernaturals,
sl ' L ' sm ⇒ sl ' sm because ' an equivalence relation. Then
by the second theorem, 〈sn〉 is Cauchy.



Continuity

Theorem

f is continuous at c ∈ R iff ∗f (x) ' ∗f (c) for all x ∈ ∗R such that
x ' c .

Example: f (c) = c2. Let c be real and x ' c . Then x = c + ε for
some infinitesimal ε, and

f (x)− f (c) = x2 − c2

= (c + ε)2 − c2

= c2 + 2εc + ε2 − c2

= 2εc + ε2

which is infinitesimal because c is a real number and so it is
limited. Thus, c2 is continuous.



Continuity

Another Application:

Theorem

Let f be a real function defined on some open neighborhood of
c ∈ R, and let ∗f be constant on hal(c). Then f is constant on
some open interval (c − ε, c + ε) ⊆ R.

Pf: Note that for some positive infinitesimal d , we have the
statement ∀x ∈ ∗R such that (|x − c |) < d , ∗f (x) = ∗f (c) = L for
some L. This implies that ∃y ∈ ∗R+, ∀x ∈ ∗R such that
(|x − c |) < y , ∗f (x) = ∗f (c) = L ∈ ∗R. By transfer, we have the
sentence ∃y ∈ R+, ∀x ∈ R such that (|x − c|) < y ,
f (x) = f (c) = L ∈ R. Thus, f is constant on the interval
(c − y , c + y) ⊆ R.



Differentiation

Theorem

If f is defined at x ∈ R, then L ∈ R is the derivative of f at x iff
for every nonzero infinitesimal ε, ∗f (x + ε) is defined and
∗f (x + ε)− ∗f (x)

ε
' L.

Example: Consider the real-valued function sin(x), where x ∈ R.

Now consider
sin(x + ε)− sin(x)

ε
for some ε an infinitesimal. Then

by sum of sines, we get

sin(x + ε)− sin(x)

ε
=

sin(x) cos(ε) + cos(x) sin(ε)− sin(x)

ε



Differentiation

cos(x) is continuous, so cos(ε) ' cos(0) = 1 and so
sin(x) cos(ε) ' sin(x). Thus,

sin(x) cos(ε) + cos(x) sin(ε)− sin(x)

ε
' cos(x) sin(ε)

ε

Also, sin(x) is continuous, so sin(ε) ' sin(0) = 0, so sin(ε) ' ε and

cos(x) sin(ε)

ε
' cos(x).

By the theorem, this implies that the derivative of sin(x) at x ∈ R
is cos(x).



Overview

• The Transfer Principle is key.

• Nonstandard Analysis makes analysis easier!


